SHORT COMMUNICATION

FURTHER DITERPENES FROM XYLOPIA AETHIOPICA (ANONACEAE)*

D. E. U. EKONG, E. O. OLAGBEMI and (Miss) F. A. ODUTOLA

Department of Chemistry, University of Ibadan, Ibadan, Nigeria

(Received 3 December 1968)

The dried fruits of Xylopia aethiopica A. Rich (Anonaceae) are a common ingredient of many African traditional cough medicines. Recently we reported the isolation from the dried fruits and the structural elucidation of a new kaurane diterpene, xylopic acid. In addition a high yield (2·1 per cent) of a fragrant essential oil was obtained, the gas chromatograph—mass spectrum² of which showed it to consist of mainly monoterpenes of molecular weight 136. We now report the isolation of five further kaurane diterpenes: (—)-kauran- 16α -ol, (—)-kaur-16-en-19-oic acid (—)-kaur-16-en-19-oic acid. The last two compounds are being reported for the first time as natural products.

After removal of xylopic acid¹ the petroleum ether soluble extract was steam-distilled and the non-volatile material was separated into acidic and neutral fractions with NaOH. The acidic fraction was chromatographed on silica gel (Merck; 0.05-0.2 mm). 5% ether in petroleum ether cluted (-)kaur-16-en-19-oic acid, m.p. $169-173^{\circ}$ [α]_D- 112° (c, 0.23) [Lit.³ m.p. $169-171^{\circ}$ and $179-181^{\circ}$; [α]_D- 110° (c, 3.0)], τ 9.05, 8.77 (2 tert. CH₃), 5.27, 2H, broad (C=CH₂). 20% ether in petroleum ether cluted (a) 15-oxo-(-)kaur-16-en-19-oic acid, m.p. $197-201^{\circ}$ identical (m.p., mixed m.p., i.r. and NMR) with that prepared as previously reported ¹ from xylopic acid; (b) (-)kaur-16-en-15-hydroxy-19-oic acid, m.p. $204-206^{\circ}$, identical (m.p., mixed m.p., i.r. and NMR) with deacetyl xylopic acid.¹

The neutral fraction was chromatographed on activated alumina (Spence type H). Petroleum ether removed fatty oils. Ether: petroleum ether (1:1) eluted further oils from which a solid m.p. $56-58^{\circ}$ separated. Elution with ether gave an oil from which (—)kauran- 16α -ol crystallized on leaving in methanol. M.p. $216-219^{\circ}$ [α]_D -49° (c, 0.242) [Lit.⁴ m.p. $216-217^{\circ}$ [α]_D -41° (c, 0.2)]. ν_{max} (nujol) 3226 cm^{-1} (OH). $\tau 9.2$, 9.17, 8.99 and 8.65 (4 tert. CH₃). Ether/ethyl acetate (1:1) eluted gums. These were left in methanol and eventually gave a solid, m.p. 64° . Further elution with the same mixture gave more gums which on trituration with benzene deposited (—)kauran- 16α ,19-diol as crystals m.p. $200-203^{\circ}$, [α]_D -42° [Lit.³ m.p. $200-201^{\circ}$ [α]_D -43° (c, 2.6 in EtOH)]. ν_{max} (nujol) $3180-3340 \text{ cm}^{-1}$ (OH). $\tau 9.05$, 9.0 and 8.65 (3 tert. CH₃); 6.43, 2H, doublet of a doublet (hindered C—CH₂OH).

^{*} Part III of the Scrics "Chemistry of Medicinal Plants"; D. E. U. EKONG and O. G. IDEMUDIA, J. Chem. Soc. (C) 863 (1967), and ref. 1 are regarded as Parts I and II.

¹ D. E. U. EKONG and A. U. OGAN, J. Chem. Soc. (C) 311 (1968).

² Run by A. H. STRUCK, Perkin-Elmer Applications Laboratory, Norwalk, Connecticut.

³ C. A. HENRICK and P. R. JEFFERIES, Australian J. Chem. 17, 915 (1964).

⁴ L. H. Briggs, R. C. Cambie and P. S. Rutledge, J. Chem. Soc. 5374 (1963).